
Equuleus Technologies

SOLID Principles

Optional Subheading
October 19, 2016

Equuleus Technologies

Why SOLID Principles?
The traits of well designed software are as follows

Maintainability - The ease with which a software system or component can be modified to
correct faults, improve performance, or other attributes, or adapt to a changed environment

Testability - Testable system lets you effectively test individual part of the system in isolation

Flexibility - Flexibility of a system allows it to be adapted to work in different ways than
previously envisioned

Extensibility - Extensibility is the ease in which new features can be added

Using SOLID design principles we can build systems that are less coupled and that allow
for systems that satisfy the above criteria

Equuleus Technologies

What is SOLID?
SOLID is acronym for

SRP - Single Responsibility Principle
◦ a class should have only a single responsibility

OCP - Open/Closed Principle
◦ software entities … should be open for extension, but closed for modification

LSP - Liskov Substitution Principle
◦ objects in a program should be replaceable with instances of their subtypes without altering the correctness

of that program

ISP - Interface Segregation Principle
◦ many client-specific interfaces are better than one general-purpose interface

DIP - Dependency Inversion Principle
◦ Depend upon Abstractions. Do not depend upon concretions

Equuleus Technologies

The Initial Product
An Employee class with the following fields

◦ EmployeeId

◦ Name

◦ DateOfJoining

◦ EmployeeType

◦ Salary

Two operations
◦ Work()

◦ IsEmployeeEligibleForPromotion(); // eligible if the employee worked for over a year

Equuleus Technologies

New Scope
Scope

◦ Lets allow to calculate the TakeHomeSalary()

◦ We should have a method CalculateTaxBracket() that should calculate the tax bracket of the Employee.
This way we can add rules for calculating the tax rate without polluting the TakeHomeSalary()

Equuleus Technologies

Single Responsibility Principle is about actors
and high level architecture

This principle advocates with the separation of concerns, a class should have only one
responsibility and if it has more than one responsibility it should be broken into separate classes.

Consider an Employee class

The logic for Calculating the TakeHomeSalary uses method CalculateTaxBracket that is in the
Employee class.

Issue:

Clearly we have a violation of the SRP, the CalculateTaxBracket responsibility should not belong to the
Employee class. This is something that belongs to the TaxRateController.

Any changes in the tax rate logic will require us to change the Employee class

Solution

Breakdown classes so that each class has a specific purpose and all functionality is cohesive

Equuleus Technologies

Code – Single Responsibility Principle
Before
public decimal TakeHomeSalary()

{

return this.Salary * (decimal) (1 - this.CalculateTaxBracket()/100);

}

After
Create TaxRateController class that is responsible for calculating the tax rate, now Employee is no longer responsible for calculating tax
rates.

public readonly TaxRateController TaxRateController = new TaxRateController();

public decimal TakeHomeSalary()

{

return this.Salary * (decimal) (1 - this.TaxRateController.CalculateTaxBracket()/100);

}

Equuleus Technologies

New Scope
Scope

◦ Actually we can get to Dependency Injection without an added scope, we can achieve this by
◦ Injecting Dependencies

◦ Using Interfaces instead of Implementations

Equuleus Technologies

Dependency Injection Principle is all about
handling over control from the function itself
to the caller function.

High level modules should not depend upon low-level modules. Both should depend upon
abstractions.

Since we are using a single example and building upon the concept. We will discuss
Dependency Injection sooner as it is a rudimentary step that deals with defining
dependencies.

Issue

The TaxRateController is instantiated in the Employee class, there is a hard dependency on the
lower layers and we are not using abstractions

Solution

Refactor the constructor to take ITaxRateController object as a parameter.

Equuleus Technologies

Code - Dependency Injection Principle
Before

public Employee(string employeeId, string name, System.DateTime dateOfJoining, decimal salary)

After

Create a constructor that accepts a ITaxRateController object allowing the caller to initialize the
dependency

public Employee(string employeeId, string name, System.DateTime dateOfJoining, decimal salary,

ITaxRateController taxRateController)

Equuleus Technologies

New Scope
Scope

◦ We realize that some Employees are Union employees, so we should reflect Union deducted from the
TakeHomeSalary() calculation

◦ We have a policy that if the Employee has been working for over a year we deduct $800 else we deduct
$1000

Equuleus Technologies

Open/Close Principle is about class design and
feature extensions

The classes should be open for extension, but closed for modification. It means that trying
to extend functionality we should not need to change existing code

Issue

Trying to introduce union dues requires us to change the Employee class.

We are forced to use if/else or switch statements to modify existing code to extend functionality

Solution

Use Strategy pattern can be used to decouple the logic (Demo - recommended)

Factory/Template pattern can also can be used to decouple the logic

Equuleus Technologies

Code - Open/Close Principle
Before

DeductUnionDues in Employee class is responsible for calculating Union dues, we are required to
change the employee class whenever the rules of calculating union dues change.

After

Using inheritance over switch statements the DeductUnionDues functionality will not need
changes in Employee class. Adding another EmployeeType will cause a change in Employee class
hence the class is open for extension and closed for modification

Introduced UnionEmployee/NonUnionEmployee subclasses, the UnionEmployee class houses the
logic. If we need to add another classification of Employee (say ContractEmployee with different
union deductions) none of the class need changing.

Equuleus Technologies

New Scope
Scope

◦ We have included automation as part of our staff, they will have ID & Name and we should be able to
treat them as non union Employee .

◦ We can create the employee as non union Employee while overriding the behavior of
IsEmployeeEligibleForPromotion()

Equuleus Technologies

Liskov Substitution Principle is about
subtyping and inheritance

The Liskov Substitution Principle says that the object of a derived class
should be able to replace an object of the base class without bringing any
errors in the system or modifying the behavior of the base class

Issue

Consider the scenario where we are adding a new Employee classification
(RobotEmployee). Considering some attributes that apply and some don’t the
question is does RobotEmployee change the Employee class behavior.

Solution

RobotEmployee is not a proper subclass of Employee as it changes the
behavior of IsEmployeeEligibleForPromotion

Change hierarchy to extract only information that is applicable to Work and
make that a base class that both RobotEmployee and other implement from

Consider Composition of the Worker object in the Employee class if we don’t
want to inherit that class

Equuleus Technologies

Code - Liskov Substitution Principle
Before

We introduced a class called RobotEmployee, we had to override the method
IsEmployeeEligibleForPromotion as the condition does not apply.

The issue here is that this changes the base class behavior and RobotEmployee may not be a
good candidate for inheriting from Employee

Tests targeting the base classes wont be applicable for RobotEmployee hence breaking behavior

After

We will need to change the inheritance hierarchy. We will need to create an Worker class that
defines the common functionality and RobotEmployee and Employee both Inherit from.

Equuleus Technologies

New Scope
Scope

◦ We have decided to change to waive Union dues for employees who have been employed for 5 yrs or
more.

Equuleus Technologies

Interface Segregation Principle is about
business logic to clients communication

No client should be forced to depend on methods it does not use and thus
easier to refactor, change, and redeploy

Issue

The client consuming the Employee classes depend on fat interfaces which contain employee
related methods along with union specific methods. Clients that don’t need union related
functionality still need to be redeployed if there are changes in union related functionality

Solution

The interface should be composed of smaller interfaces this way client wont need to be
redeployed when unrelated functionality changes.

Equuleus Technologies

Code - Interface Segregation Principle
Before

We had one IEmployee interface which had both Employee along Union related methods. This
caused coupling and hence clients that did not implement Union related functionality needed
redeployment

After

Define an IUnionDeduct interface and move the union related methods from the IEmployee
interface. Also compose an IUnionEmployee employee that aggregates the IUnionDeduct &
IEmployee interfaces. This way for client not consuming IUnionEmployee will not need
redeployment.

Equuleus Technologies

Resources
Source for the above exercise can be downloaded from here

